
1

Patent Litigation: An Introduction to Patent

Claims, “Limitations,” Infringement, and

Invalidity -- Part Four
Andrew Schulman

Senior Software Litigation Consultant, DisputeSoft

SoftwareLitigationConsulting.com

In Part 1 of this six-part series, we discussed how the actionable part of a patent is its “claims,”

and in Part 2 how claims are made of “limitations,” which are generally those elements of an

invention necessary to distinguish it from earlier technology (“prior art”). The previous

installment, Part 3, looked at the following:

● Using a patent claim as a parts list or checklist to investigate infringement by searching

for products that include the so-called “limitations” (elements) of the claim.

● Defending against a patent owner’s assertion of infringement by showing a product’s

absence of one or more limitations of an asserted claim, and/or by showing the patent

claim is invalid (e.g., by finding each and every limitation in a piece of prior art).

● Why nomenclature is important: the names the patent owner uses for claim limitations,

and the often-different names used for matching elements found in accused products or in

the prior art.

● How a patent claim often changes during examination by the patent office (PTO), and

why such changes -- often made to avoid the prior art -- are important for understanding

the scope of the claim.

● Why the drawing on the front page of a patent isn’t necessarily a good representation of a

patent claim.

● Why the title of a patent, or what otherwise seems like what the patent is “all about,” may

not be the focus of patent litigation.

In this Part 4, we’ll look at:

mailto:undoc@sonic.net
https://disputesoft.com/experts/andrew-schulman/
http://www.softwarelitigationconsulting.com/
https://disputesoft.com/patent-litigation-an-introduction-to-patent-claims-limitations-infringement-and-invalidity-part-one/
https://disputesoft.com/patent-litigation-an-introduction-to-patent-claims-limitations-infringement-and-invalidity-part-two/
https://disputesoft.com/patent-litigation-an-introduction-to-patent-claims-limitations-infringement-and-invalidity-part-three/

2

● Investigating possible infringement of a software patent claim (see Part 5 for

investigating possible invalidity);

● Brainstorming search terms when using a patent claim to find infringement;

● Testing a possibly-infringing product for infringement, with a limitation-by-limitation

comparison of a claim to an accused product (we’ll see in Part 6 that the Local Patent

Rules in key federal districts require this limitation-by-limitation comparison);

● How to structure the comparison of a single claim limitation with something possibly

matching it in an accused product.

● “Means for” and functional claiming; and

● The Doctrine of Equivalence, and the function/way/result test for equivalence.

Some terminology that we’ll be using in this part of the series includes:

● Construed claim: a patent claim that incorporates its meaning (following the process of

claim construction), in contrast to the raw language of the claim (in the absence of claim

construction).

● Accused product: defendant’s product (or service or internal usage; more formally called

“accused instrumentality”) that the patent owner has accused of patent infringement.

● Candidates: Products or services that a patent owner is considering as possibly infringing,

and requiring further investigation.

● Product attribute: what in an accused product is being juxtaposed with a claim limitation.

Investigating infringement of a software patent claim

In Part 3, we worked through each of the limitations that comprise claim 1 of a software patent

(7,472,398, titled “Method and system for hosting an application with a facade server”). But we

did so entirely on the patent’s own terms, without considering any specific possibly-infringing

products. In this Part 4, we’re going to actually do something with the patent: go looking for

infringers, i.e., outsiders who are practicing the patent, who might therefore be targeted with a

request to license the patent (with a possible threat of litigation).

By having first worked through the patent claim in Part 3, without a specific target in mind, we

followed the order the courts dictate: first do “claim construction” (determine the meaning of the

https://disputesoft.com/patent-litigation-an-introduction-to-patent-claims-limitations-infringement-and-invalidity-part-three/
https://patents.google.com/patent/US7472398B2

3

claim’s terminology), and then read the construed claim (not the raw claim language) onto a

product that has been accused of patent infringement. “Construed” refers to the interpretation of

the claim’s wording, following claim construction. On the other hand, many patent owners will

have started with whom they wish to sue, and with that target’s products or services which seem

to relate to one or more patents in the owner’s portfolio, and only then back into an interpretation

of the patent claims that helps create a match with the target’s most valuable products.

Either way, the patent owner must at some point conduct a patent-to-product comparison. Note:

not a comparison of the plaintiff’s product with the defendant’s product, but of the plaintiff’s

patent to the defendant’s product).

The reader will know from earlier parts of this series that this comparison of the patent to a

product must be based on the patent claims, not on the patent’s title or drawings, nor on

something vague like the inventor’s aggrieved “They’re doing X, and my patent is the only way

one could possibly do X, so they stole my idea!” gut-level feeling.

Further, this claim-to-product comparison must focus separately on each and every limitation

(element or step) that comprises the claim. At this stage, one puts on blinders: for the first

limitation, what matches it in the accused product?; now the second limitation; and so on.

We walked through a little of this procedure in Part 3 when looking at a short simple claim in a

toner-related patent (8,951,704), and saw that, out in the real world, there were well-known

named commercial embodiments for two of its three limitations. These commercial embodiments

were made by companies such as BASF and had names such as “IGACURE 819” and

“KarenzMT.” To infringe, a product would need to incorporate all three limitations, and even

these names for two of the limitations might just be a few of many possible pseudonyms, but

knowing some alternative names for some of the limitations is an important first step in the

search for infringement.

Why this focus on names? Engineers (for whom patents are ostensibly written) care about what

things are, not what they’re called. As Juliet almost said to Romeo, a pentaerythritol tetrakis(3-

mercaptobutylate) by any other name would smell as sweet (though the toner patent actually says

it is “preferable from the viewpoints of having less bad odor and the like”).

https://patents.google.com/patent/US8951704

4

But patent claims use human language to set out the boundaries of an invention. This means that

those working with patents, to look for infringement and invalidity, have to immerse themselves

in how language maps onto technology. Much of patent infringement analysis is about names or,

to put it more formally, nomenclature.

Here, for each claim limitation, we (currently playing the role of patent owner, plaintiff, or P) are

going to want to provide some name for what corresponds to the limitation in an accused product

or service belonging to the defendant or potential defendant (D). Or, if D’s product doesn’t have

a formal name for this component, or if we’re too early in the litigation to have learned what

names D uses in its internal documentation, we’ll want to at least designate a location (where in

the product or service a given limitation is found; see Part 6 on claim charts required by Local

Patent Rules).

One can’t just say, “D meets the ‘framis’ limitation of P’s patent claim, because D’s product

includes a framis.” Actually, plaintiffs often do say just that sort of thing, but it’s called “aping”

or “mimicking” the claim language, and courts frown on it. We also don’t want to say, “Believe

us, it’s in there, even though we don’t know what D calls it, or where it is located inside D’s

product, because there’s no way the product could operate without it.” Actually, P might say that

initially for a limitation or two, before it learns more about the product it’s accusing, but such

“on information and belief” assertions should be kept to a bare minimum, and used only after a

diligent search for more detailed, publicly-accessible information about how D’s product works,

and where each limitation likely resides inside D’s product.

The reader may wonder about these “names” that we’re saying are used for internal components

of products. Often the product itself, the thing sold to consumers, may not contain any names as

such. However:

● Vendors often produce manuals, specifications, and parts lists, and are often required to

make certain disclosures (see, e.g., schematics submitted to the FCC).

● Reverse engineering is often a prerequisite to filing a patent-infringement suit. With a

textual product like software, while some names found in source code are boiled away in

compilation to produce an executable software product, or obfuscated in web-based

software, information regarding the internal operation and composition of software

products and services is often publicly accessible to those with the right tools to view it,

https://www.linkedin.com/pulse/common-claim-chart-problems-patent-litigation-andrew-schulman/
https://www.linkedin.com/pulse/common-claim-chart-problems-patent-litigation-andrew-schulman/
http://fccid.io/
http://www.softwarelitigationconsulting.com/articles/hiding-in-plain-sight-using-reverse-engineering-to-uncover-software-patent-infringement/

5

and is often also reflected in materials such as config files, error logs, API descriptions,

and the like.

● Last but not least, in a patent-infringement lawsuit, D is generally required to disclose

relevant internal documents (including source code) to P, and vice versa, as part of the

so-called “discovery” phase of litigation (Part 6 of this series will discuss pre-filing

investigations, diligent use of public information, and discovery).

Typically, P’s patent claim limitation is worded in one way, and a corresponding feature or

attribute in D’s product or service, or a corresponding disclosure in the prior art, may be

described with an entirely different wording, yet still (at least arguably) be the same thing. Two

different names for the same thing still fall within what’s called “literal” patent infringement.

That P calls it A and D calls the same thing B does not mean that A and B are “equivalents” --

the doctrine of equivalence (DoE) is a fallback position, when A and B are different, though

insubstantially so. Below, we’ll discuss DoE, and the “function/way/result” (FWR) test for

equivalence.

Even getting the very-partial distance we covered with the toner patent claim in Parts 2 and 3 is

going to be more difficult for the software facade-server patent that we started to look at in Part

3, which we’re going to more thoroughly cover here, because whereas some fields -- such as

chemistry, biotech, pharmaceuticals, and electronic engineering -- have well-established ways of

naming components, software has much looser nomenclature. The IEEE and ACM have various

classification schemes, but even when one has full source code for a software product, it

typically won’t reflect these classifications. To pick an arbitrary example, how many different

ways are there in software of referring to a hash chain? It might be called hashChain or

hash_chain, but it might instead be called a Merkle tree or blockchain. A patent claim might use

one term, and an accused product a different one. Indeed, the code for the accused product might

simply contain an unnamed loop such as: while (! some_goal) x = md5(x).

As a different example, a patent claim might include as one of its limitations the computation of

a square root (no, this isn’t a “patent on square root”: we said this was just one limitation).

Trying to find something that matches this in an accused product or system might be easy,

because the square-root component might come labelled as sqrt, squareRoot, or the like. But

what if the name was newtonRaphson or eulermethod, or if names were obfuscated, or if there

https://patents.google.com/patent/US7472398B2
https://en.wikipedia.org/wiki/Hash_chain
https://www.brookings.edu/book/math-you-cant-use/

6

were simply a few lines of inline code, as part of a larger function? If you asked fifty

programmers to write a square-root function, you would likely end up with fifty different pieces

of code, all of which might satisfy a “square root” limitation in a patent claim, but which might

be devilish to locate, without knowing specifically what to look for, in a product with millions of

lines of code.

Conversely, just because a piece of code is labelled “DoXYandZ” does not mean it is doing the

same X, Y, and Z specified in a patent claim. Comparing the claim limitations with a product or

with a prior-art reference is not a matter of mindless keyword searching or “pattern matching.”

In part because of these naming and no-name problems, it often makes sense to look for the most

specific, or specifically-named, claim term first, along with some synonyms. In our facade-server

claim, it wouldn’t make much sense to start by looking for CPU or memory or a web browser;

while we’ll need those, they are too generic to start off a reasonable search. Instead, the most

specific thing we have is the term “facade server.”

Brainstorming search terms

One search term is of course “facade server” itself, but that’s not a standard term of art, so we’ll

also need some synonyms, or terms that are likely associated with any infringing technology. If

someone were infringing, what terminology would they use for the different components or steps

that would comprise infringement, and where would such terms appear? This is more-than-

superficially like a forensics question: if D did X, what would evidence for X look like, where

would it be, and how would we find it? Fancifully, if V was hit over the head with a facade

server, and we think D may have done it, what evidence would exist that D has a facade server?

To refresh the reader’s recollection from Part 3, the patent we’re using as an example

(7,472,398) claims a program, an application, and a “facade server,” where “the program creates

an interface between the facade server and a web-browser for exchanging data associated with

the application,” and “the facade server hosts the application without utilizing network protocols

and without opening network ports.”

We know (the reader may need to briefly revisit Part 3 at this point) the patent is about

displaying local app contents in a web browser, and using a fake web server (the “facade server”)

https://patents.google.com/patent/US7472398
https://disputesoft.com/patent-litigation-an-introduction-to-patent-claims-limitations-infringement-and-invalidity-part-three/

7

as part of this. The specification itself, or dependent claims, likely provide clues to potentially-

infringing technology that are more specific than what appears in the claim. Here, the patent

specification discusses the now-ancient common gateway interface (CGI), and we know the

patent claim explicitly rejects network access, so one phrase to look for might be “local CGI.”

The customer is likely using the facade server to put a local web-browser front-end on a “legacy”

app.

Other names might come from searches the patent examiner conducted, reflected in the file

wrapper. The patent examiner was looking for prior art as grounds to not grant the patent,

whereas right now we’re interested in infringement of an already-granted patent. But to adopt a

phrase noted earlier in this series, “that which almost invalidated, before it was granted, might be

a good thing to look for as potentially infringing afterward.”

For example, the file wrapper indicates the examiner searched for (loopback OR web browser)

AND (shared memory OR named pipes). The examiner found an “interactor” in 6,717,593 that

can download XML and JavaScript via inter-process communications (IPC) rather than via

HTTP. While P tried to distinguish its facade server from this interactor, on the basis of the

interactor not hosting an app, and therefore not being a server, at any rate this suggests that IPC

connected to web browsers as another place to look for infringement.

All of this suggests, at least to a software engineer, some possible terminology that someone

might be using, if they were infringing:

● (localhost OR loopback) AND web

● local CGI

● “cgi-bin” AND (localhost OR loopback)

● LPC (local procedure call, as a local form of RPC, remote procedure call)

● legacy; legacy AND gui; legacy AND browser; CLI (command-line interface) AND

browser

● (front-end; facade; wrapper; shell; shim) AND web AND legacy

● web front-end; browser front-end

● (loopback OR web browser) AND (shared memory OR named pipes)

https://patents.google.com/patent/US6717593B1/en

8

Which does not mean any product described with one or more of these terms is infringing. We’re

just generating candidates at this point.

So, armed with a set of search terms, we look for infringement of our patent claim.

A possibly infringing product

To save time, I will pretend to have found, using the search terms above, an infringing product

made by D Inc.; in fact, I cobbled together a prototype using an existing web server. The

hypothetical product is named Legacy2Web. and its pretend marketing literature states “Use a

web browser for your locally-stored legacy apps! Put a shiny new front-end on old programs,

even ones for which you no longer have source code!” It can run local character-mode

command-line apps, and have their output appear in a web browser, as shown in Figure 1 below.

The blue Lucida Console font indicates that the output is rendered in HTML:

Fig. 1: Sample screenshot from a hypothetical product, Legacy2Web, showing HTML output from the local

command “tasklist | grep -v svchost”.

9

As a product, this seems somewhat uninteresting without properly rendering tabs, and without

being able to further interact with the output appearing in the window. The user would want to

click on a line of output, and somehow feed that back into the underlying program to get further

details; perhaps the product should support something like “Expect” scripts. But at any rate, Fig.

1 looks “in the ballpark” of the facade-server claim; we won’t stop at that, but it’s a candidate

worth further investigation.

In this example, the “cmdrun.exe” sample takes anything the user puts in a browser address bar

after “localhost/cgi-bin/cmdrun.exe,” runs it as a shell command, and displays the command’s

output in the browser. Let’s not get into the security implications of this product, except to say it

had better not have any network connections or ports open, because otherwise any malicious web

user could do what they want with this server, simply by entering arbitrary command lines. So

either this product is one massive security hole, or it has a reasonable chance of meeting two

crucial claim limitations (“without utilizing network protocols and without opening network

ports”).

Limitation-by-limitation comparison of a patent claim with

an accused product

We can’t be satisfied with how this product merely seems reminiscent of the facade-server

patent. We need to compare the facade-server patent claim limitations (for which we’ve done

some initial claim construction in Part 3) with what appears to correspond with each limitation in

the Legacy2Web product. It might feel like we already did this in Part 3, but that was claim

construction in the absence of a target product; now we’re comparing the (construed) claim to an

accused product. Here, duplicated from Part 3, is the claim:

● [1pre] 1. A computer system comprising:

○ [1a] a central processing unit (CPU);

○ [1b] a memory unit coupled to the CPU;

○ [1c] an application stored in the memory unit and executable by the CPU;

○ [1d] a facade server stored in the memory unit and executable by the CPU; and

○ [1e] a program stored in the memory unit and executable by the CPU,

10

○ [1f] wherein the program creates an interface between the facade server and a

web-browser for exchanging data associated with the application,

○ [1g] wherein the facade server hosts the application without utilizing network

protocols and without opening network ports.

Part 3 noted the [1a] CPU and [1b] memory limitations might present issues, but for now note

that D Inc.’s website says the product runs on Microsoft Windows (which in turn uses an Intel-

compatible CPU), and requires 50 MB or more free memory. The claim requires memory

coupled to the CPU, and this Windows-based product comprises EXE and DLL files, which

contain instructions such as MOV DWORD PTR EAX,[01234h], which in turn shows memory

such as [01234h] coupled to CPU registers such as EAX. It sounds dumb to spell out such basic

points, and we need not spend much time on them, but we can’t ignore them when using a patent

claim as a device to test for infringement.

[1c] Application: D Inc.’s Legacy2Web product includes a CMDRUN.EXE sample application,

which takes its command-line argument, executes it, and renders the output as HTML, with a

“Content-Type:text/html” MIME tag. Keeping an eye on indirect infringement, we note the

marketing literature (and the very product name) indicates the product is to be used with the

customer’s “legacy” software, which is a type of application.

Our choice of which part of the product corresponds to the [1c] application in the claim is

constrained: whatever in the product we select as a match for the [1c] application must, per [1f],

also have data “associated with” it that is exchanged between the facade server and a web

browser and, per [1g], the application further must be “hosted” by the facade server. As a general

statement, the choice of which parts of a product are juxtaposed with each claim limitation is

constrained by how the limitation fits into the claim as a whole.

[1g] Application hosted by facade server: That the app is “hosted” is shown (somewhat

superficially) by the “host” in the “localhost/cgi-bin/” prefix needed to run the CMDRUN.EXE

sample app. That the hosting is done by the facade server is less apparent; see [1d] below.

[1d] Facade server: If the accused product contains a facade server, it is constrained to be

whatever hosts the app, such that the app’s output gets rendered by the web browser. The

Legacy2Web product comes with a file called SERVER.EXE. Cursory inspection of the file with

11

a “strings” utility (note that we’re actually looking at the product itself, not relying solely on its

marketing literature or the vendor’s website) shows that it contains text strings such as

“HTTPServer,” the “text/html” MIME type, “cgi-bin,” “CGI/1.1,” and

“GATEWAY_INTERFACE”. The server accepts requests, and sends responses, using HTTP;

but it appears restricted to access via localhost. It appears to be implementing the CGI interface,

and we will at least for now designate SERVER.EXE as the facade server. Since the

CMDRUN.EXE sample runs out of the cgi-bin directory, and since SERVER.EXE appears to

provide cgi-bin, we can at least provisionally conclude that this matches the claim requirement

that the facade server host the application.

[1e] Program creates data-exchange interface between facade server and web browser: There

doesn’t seem to be a separate component in Legacy2Web that does this. However, such an

interface clearly exists (local app commands display their output in the web browser), and for

now we’ll assume it’s either right inside SERVER.EXE, and/or that the interface is created

during initial setup/configuration by another file included with the product, INSTALL.EXE.

We’ll infer that turning “localhost” into messages sent to SERVER.EXE is something present in

the browser (“doh,” some readers will say -- which does not mean it should be left unsaid; patent

infringement analysis can include explicitly stating what everyone already knows).

INSTALL.EXE also contains the string “app://” and so likely registers an “app://” local protocol

handler. We might use this to assert infringement of dependent claim 2:

● “2. The system of claim 1 wherein the program interacts with the facade server through a

local protocol registered on the system.”

Note that in claim 2, the “program” actually “interacts” with the facade server, in addition (since

claim 2 incorporates claim 1) to merely creating an interface between the facade server and the

web browser.

[1g] Without network protocols or network ports: The claim only requires that this apply to

how the facade server hosts the app. That’s a good thing if we want to find infringement, because

if we open up the Network tab in the browser’s Developer Tools, it becomes clear the browser is

turning the “localhost/cgi-bin/...” string into an HTTP request sent to IP address 127.0.0.1 via

port 80. We can show that it’s entirely local; running a remote firewall test indicates that port 80

https://en.wikipedia.org/wiki/Strings_(Unix)
https://tools.ietf.org/html/rfc3875.html

12

is not visibly open to the outside world. So, in that sense, we haven’t opened a network port, and

are not sending HTTP requests over the network. Still, D could say that, even when used

exclusively for localhost access, HTTP is still a network protocol, and that 80 is a network port.

That’s a reasonable argument, and typical of arguments in patent litigation.

Now, this claim does not rule out all network protocol or port usage; it’s only the facade server

which must host the app without those, and we’ve seen the facade server hosts the app using

CGI. But we know from claim construction in Part 3 that the facade server as a whole cannot use

net protocols. This is not spelled out in the claim (which only explicitly eschews net protocols

for hosting the app), but the patent owner said this during PTO examination to distinguish prior

art found by the examiner, and the patent owner now is stuck with it. Therefore, even if local-

only HTTP to localhost isn’t a [1g] “network protocol,” it’s still important to P if SERVER.EXE

as a whole has no non-local connections. Hopefully, this is true for security reasons, as allowing

any net access (including links invoking “cmdrun.exe” from non-local web pages) is dangerous

if anything passed to CMDRUN.EXE runs as shown in Fig. 1.

[1f] Web browser: The web browser is likely more of a precondition than a limitation (see Part

3). But even if an infringer need not make or sell a web browser, one must still be present for

infringement to occur. Fig. 1 shows a web browser displaying HTML output transmitted by

SERVER.EXE and generated by CMDRUN.EXE. But what if the product came with some other

way of viewing the output of legacy applications? The “Equivalence” section below discusses

how P might handle the presence of an XML viewer, rather than of a web browser.

Structuring the comparison of a single patent claim

limitation with a product attribute

Above, when trying to write explanations of why the defendant’s Y is literally the same as the

claim limitation’s X, it was hard not to sound forced or contrived: “D’s web browser is the same

as the claimed web browser, because, well, because they’re both web browsers.” Treatises on

patent litigation provide little guidance on literal infringement, in contrast to extensive coverage

of the doctrine of equivalents (DoE), in part because it appears there’s nothing to say: two things

13

are either the same, or they’re not. In the words of a friend of mine who is also an expert witness

on patent cases, “My job in these cases is to say that something that is red … is ‘red’.”

But a moment’s consideration shows that things are not so simple, and it should be possible to at

least explain how or why there is or is not a match between a claim limitation and a product

attribute. Take the expert’s “red is red,” for example. One could at the very least refer to a

standard, such as the PANTONE color system: “D’s gizmo matches the ‘red’ limitation of P’s

claim, because the gizmo’s color matches PQ-18-1664-TCX, which is a standard for ‘fiery red’

or ‘fire engine red.’ ” One could compare RGB or CMYK color values. There is a lot to say. As

a promotional video at Pantone’s website says, “Color is complicated.”

And the role of a technical expert, opining on whether D’s product attribute Y matches P’s patent

claim limitation, is generally more complicated than announcing that a red thing is, indeed, red.

Assessing literal infringement is more like saying whether a given painting is by Van Gogh, and

not simply a very good forgery. This is an objective test — something really either is, or is not,

by Van Gogh -- and yet it has been easy for experts to get it wrong, and for experts to have a

difficult time explaining the basis for their opinions.

What does this have to do with patent claim charts? As with the art expert struggling to

determine the identity of a painting, or a forensic expert determining whether two fingerprints

are from the same person, the necessary patent-infringement comparisons are often not simple.

In any field, saying that X is-a Y, or that X is-not a Y, is the sum of many smaller comparisons,

which can (and often should) be spelled out. As noted in an excellent evidence-law paper by

Liebman et al., “all evidence of identity derives its power from the aggregation of individually

uninteresting matches or non-matches.”

In other words, the assertion that D’s product attribute Y matches P’s claim limitation X can be

structured. The previous section discussed structuring the comparison of the claim as a whole,

with an accused product, by dealing separately with each limitation making up the claim. This

section is arguing that some of the same disaggregation applies to each individual limitation. P

wants to say that D’s “gizmo” matches the “widget” limitation of P’s claim? Or even that D’s

“red widget” matches the “red widget” limitation of P’s claim? Fine, there should be some way

to explain that conclusion, given that the conclusion must be made up of some smaller

comparisons, and not based merely on a “shucks, they look the same to me” general impression.

https://www.pantone.com/color-systems/pantone-color-systems-explained
https://www.pantone.com/color-finder/18-1664-TCX
https://www.amazon.com/Real-Van-Gogh-World-Struggles/dp/9089641769
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2194117
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2194117

14

One way to structure such a comparison is to first break down the limitation into subparts. For

example, “the program creates an interface between the facade server and a web-browser for

exchanging data associated with the application” has at least four distinct subparts: (1) facade

server, (2) web browser, (3) interface between facade server and web browser, and (4) interface

for exchanging data associated with the application. We could further separate out (5) application

and (6) data associated with the application. Each such facet or attribute of the limitation can be

compared with what supposedly corresponds to it in the accused product.

That’s fine for a long compound limitation, but what about something like “facade server”? One

could first deal with server, and then deal separately with the “facade” adjective, but while

adjectives often should be handled as separate sub-limitations, here that seems contrived and

unhelpful.

It makes more sense to list all the attributes that we know the “facade server” must have, based

on our reading of the patent and of the file wrapper in Part 3:

● Acts as a web server ...

● … but (per the file wrapper) “does not use any network protocols”;

● Has an interface to web browser, for exchanging data associated with application;

● Hosts the application ...

● … without using network protocols, and without opening network ports.

We can then show how SERVER.EXE in the accused product is, or is not the same as the

facade-server claim limitation, by marching through each of these attributes:

● Acts as a web server -- As noted earlier, SERVER.EXE uses HTTP to accept requests

and send responses, and supports the “text/html” MIME type.

● … but without network protocols -- HTTP is itself a network protocol, but the “without

network protocols” attribute is still arguably met if P can show that SERVER.EXE only

accepts HTTP on local address 127.0.0.1.

● Interface to web browser, for exchanging data associated with app -- Fig. 1 shows a web

browser displaying output from the app; the browser received this output from

SERVER.EXE.

15

● Hosts the application -- SERVER.EXE uses CGI to run the app, and to capture the app’s

output.

● Without using network protocols -- see local HTTP above.

● Without opening network ports -- SERVER.EXE listens on port 80, which is the network

port for HTTP, but the “without opening network ports” attribute is still arguably met if P

can show that SERVER.EXE only listens for port 80 on local address 127.0.0.1.

Another way to structure comparisons of single claim limitations with product features is

addressed below at “Equivalence.”

Two more points before we leave Part 4 and the topic of using a patent claim to investigate

infringement, and shift to Part 5, where we’ll use the same claim to investigate prior art that

might render the patent claim invalid. We should discuss so-called “means-plus-function” claim

limitations, and the Doctrine of Equivalence we keep mentioning.

“Means for…”: Functional claiming

One important type of limitation, not employed in the claim we’ve been using, is a functional

limitation. The claims we’ve looked at so far in this series have included limitations

corresponding to elements of machines (possibly virtual machines) or to steps in a process. Such

limitations are in this sense structural. In contrast, a functional limitation is one that indicates

what something is for (what its purpose or function is), without indicating how that function is

achieved (its “means” or implementation).

Reference is often made to “means-plus-function claims,” but they really are present at the

limitation level; a single claim might contain a series of means-plus-function limitations,

possibly in combination with standard structural limitations.

Typically, a means-plus-function limitation begins with the phrase “means for…,” and goes on

to indicate some desired function or purpose the “means” (i.e., implementation) would produce.

For example, claim 15 of the facade-server patent includes a “means for viewing application

data,” “means for generating application data from a web-based application,” and so on. In other

words, the claim language indicates rather vaguely that some means, not specified inside the

claim itself, will serve the purpose of viewing application data.

16

Such claim language seems slightly counter-intuitive: the limitation says “means for doing A,”

yet it’s precisely such means that are not set forth in the claim. Instead, “means for doing A”

indicates that all the claim explicitly represents is that there is something that can do A; i.e., there

is some structural thing that can perform the function A.

But not any thing that can perform the function A. Importantly, such a limitation does not read

on any product that, by whatever means, yields the same result (in claim 15 cited above, viewing

app data, or generating app data from a web-based app). Instead, 35 USC 112(f) states that a

limitation “may be expressed as a means or step for performing a specified function without the

recital of structure, material, or acts in support thereof, and such claim shall be construed to

cover the corresponding structure, material, or acts described in the specification and

equivalents thereof” (emphasis added).

In other words, to properly construe and then use such a claim limitation, we must go into the

patent specification (spec) and find structure, material, or acts (SMAs), or “equivalents thereof,”

that serve or can carry out the stated function. Those SMAs are then essentially “imported” into

the raw claim language to yield what the limitation actually covers. Any such SMA in the

product constitutes a match, if it serves the claimed function.

While “importing” from the spec into the claims is a cardinal sin in patent law, so is trying to

work with the raw unconstrued claim language. Means-plus-function limitations are an important

example of how vital claim construction is to proper use of claims in patent litigation. In our

example, “means for viewing application data” cannot be used to identify infringement in

anything that provides some way of viewing app data. It must be one of the specific ways that

are spelled out in the spec.

In this way, the raw unconstrued functional claim language is effectively replaced with the

disclosed means. This is also an example of how claim construction often expands the claim

language: given a limitation A, and the court’s construction of A as meaning, e.g., “B or C, but

not D,” the search for A in the accused product has effectively been replaced with a search for B

or C and not D.

So what means does the facade-server patent disclose for viewing app data? The ‘398 patent spec

doesn’t refer to “viewing” app data, but it does state, “The browser 106 may be capable of

https://www.law.cornell.edu/uscode/text/35/112

17

rendering application data generated by application 112 onto the display 114 … The browser 106

may be any type of web-browser, such as Internet ExplorerⓇ, NetscapeⓇ, and MozillaⓇ.” D

might lamely argue that this is a means (SMA) only for rendering app data onto a display, but

not for “viewing” it. Assuming that argument failed, D would have a difficult time arguing that,

e.g., Chrome, Firefox, and Safari are not also means for viewing application data. However, if

the accused product instead used a custom local-only XML viewer, for example, D could argue

that this isn’t one of the disclosed means (and that it isn’t equivalent to one either), and therefore

that claim 15 isn’t infringed.

Equivalence and function/way/result

As a final point before we turn to an invalidity-related search in Part 5, we’ve mentioned the

doctrine of equivalence (DoE) several times in this series. What if we (playing the role of patent

owner P) could find a match in defendant D’s Legacy2Web product for all but one or two

limitations from the facade-server patent claim, and those one or two could only be matched-up

with something in the product that was similar but not identical to what the claim required?

For example, what if the product doesn’t use a web browser, but instead comes with a custom

local-only XML browser that it uses for displaying app output? This would not literally meet the

claim requirement for an interface, created by the program, between the facade server and a

“web browser.”

Rather than throw up its hands and admit defeat, at least for this claim, or pretend that a local

XML browser is literally the same as a web browser, P can instead use DoE as a fall-back

position. While using DoE is a fallback position, less desirable to P than showing literal

infringement, DoE is nonetheless a crucial part of patent law. In this sense, it is somewhat like

obviousness, which as we’ll see in Part 5 is also a fallback position (defendants would prefer to

show the invalidity of P’s patent by pointing to its complete anticipation by a single piece of

prior art), yet is viewed as crucial to patent law (it is, mostly unlike equivalence, also enshrined

in the patent statute: 35 USC 103).

Using DoE, P will argue that D’s custom local-only XML browser is, for purposes of this patent,

equivalent to the web browser in P’s claim. P cannot merely assert this, in what is called a

https://en.wikipedia.org/wiki/Doctrine_of_equivalents
https://www.law.cornell.edu/uscode/text/35/103

18

“conclusory” manner. Instead, P must use one of the well-established tests for equivalence to

make this point.

One test is that of “known interchangeability,” i.e., that an ordinary non-inventive practitioner

(the “person having ordinary skill in the art,” or PHOSITA) reading the patent would, at the

relevant time, have known that an XML browser could be substituted for the web browser

(again, at least for purposes of this patent). P could for example point out that most web browsers

also render XML. Because the web browser here must be local-only, P could also argue that

most XML browsers can be limited to local-only access (at the very least by disconnecting the

internet or by exercising tight local or intranet control in a firewall).

Another DoE test is “function/way/result” (FWR). This asks whether a feature in D’s product,

while not identical to P’s claim limitation, nonetheless serves largely the same function (purpose

or role), in largely the same way (implementation), to produce largely the same result. Each of

function, way, and result must be analyzed separately; P often tries to slur them together in a

conclusory manner. Note that the function, way, and result are not of a web browser generically,

but of the one specifically claimed in this patent.

In P’s claim 1, the function of the web browser is to reside on the other side of the data-

exchange interface from the facade server (note the function in this claim is not necessarily to

display app output). The way and result are less evident from the claim itself, but we’ll make a

small leap and argue the way is reading data from the interface, and the result is that the app,

hosted by the facade server, has its output displayed. In the version of D’s Legacy2Web product

which uses a local-only XML browser, the function would also be to sit on the other side of

interface from the facade server; the way is also to read data from the interface, and the result is

to display this data (which now presumably is in XML rather than HTML format, with the

display an XML tree rather than a local web page).

Note these DoE tests are performed on particular limitations, not holistically on the entire claim.

While the analysis above feels tedious, actually P probably ought to explain its literally-infringed

limitations with a similar level of detail. After all, if two things are literally the same for

purposes of the patent claim, all their relevant attributes (including function, way, result, inputs,

outputs, and so on) must also be the same, and P should be able to point out some of these

https://en.wikipedia.org/wiki/Doctrine_of_equivalents#United_States

19

relevant matching attributes, rather than conclusory leaving it at “they’re the same.” This was

discussed earlier in the “Structuring the comparison” section, though now having seen the

function/way/result test for equivalence, it should be clearer what it means to structure a

comparison.

Figure 2 illustrates the difference between literal infringement on the one hand, and infringement

under the doctrine of equivalents on the other hand. In the "literal infringement" portion of the

figure, A B C D in the claim exactly matches W X Y Z in the accused product, but there is not

quite such an exact match in the "equivalence" portion ("foo" has a different shape and an

additional outward connection, not found in C). Under the function/way/result test, equivalence

could be shown if "foo" plays substantially the same role as C (note from the arrows that it has

the same connections to W and X, that C has to A and B; though "foo" also has an additional

connection to Z, which C does not have to D), is implemented in substantially the same way, and

yields substantially the same result as C.

Fig. 2: Literal infringement of a patent claim requires that each and every limitation of the claim (here, elements A

B C D) must be present in an accused product, albeit likely under different names (here, W X Y Z). Under the

doctrine of equivalents, one or more claim limitations may not be literally present in the accused product, if it can

be shown that a substitute product element (here, "foo") is equivalent to the missing claim limitation (here, C).

There are restrictions on what P can point to as an equivalent. If, in order to acquire the patent in

the first place (during patent prosecution), P told the patent examiner that P’s limitation A differs

from some B the examiner found in the prior art, P cannot turn around in litigation, find a B in

D’s product, and point to that B as an equivalent to P’s A. This is called prosecution history

estoppel (PHE) or “file-wrapper estoppel.” Estoppel means a litigant is precluded from arguing a

point.

https://en.wikipedia.org/wiki/Prosecution_history_estoppel

20

That P shouldn’t be allowed to talk out of one side of its mouth in patent prosecution, and then

out of the other side in patent litigation, is a general point (not limited to DoE) that we noted

earlier, with the patent-law “nose of wax” simile: P cannot treat its patent claim like a flexible

toy nose, twisting it one way (to originally get the patent granted, or later to escape invalidity)

and another way (to capture infringement). Somewhat similarly, D can’t point to something in

the prior art as anticipating P’s claim, and then turn around and argue that the same thing, in D’s

own product, doesn’t help show infringement. The invalidity/infringement “near-mirror image”

(discussed earlier in this series) helps inhibit litigants from taking unreasonable positions.

As another possible limit on equivalence, what if P points to something in D’s product as

equivalent to a limitation in P’s claim, and that thing was already known, or foreseeable, at the

time P applied for its patent: if it’s so darned equivalent, wouldn’t P’s claims have already

covered it (even if not having explicitly noted it)?

Conversely, what if P points to something in D’s product that simply didn’t exist at the time P

applied for its patent (so-called after-arising technology): should pioneer inventor P be able to

“reach through” the claims to capture later progress in the field? That would be consistent with

the “prospect theory” noted earlier in this series (a patent is like a claim to future extractions

from a piece of property), yet on the other hand much progress comes not only from original

inventions, but from the accretion of small improvements, for which the patent system also must

provide an incentive. How much do we want to reward the inventor of the “facade server,” over

others who later make the bare principle work on a large scale for millions of users? We’ll take

this up in a later article, and for now simply note that patent law, and intellectual property

generally, is filled with such tensions.

Conclusion

In this Part 4, some of the major points included:

● Claim-to-product comparisons are limitation-by-limitation

● Patent infringement analysis generally requires disaggregated comparisons using the

claims of a patent, the limitations of a claim, and the attributes of a limitation.

21

● Patent litigation requires thinking about how language maps onto technology; software in

particular has looser nomenclature than other fields such as chemistry or electronics.

● Patent owners (P) suing for infringement must conduct a diligent search for detailed

publicly-available information about how the defendant (D)’s accused product works,

and about the location in D’s product where each of P’s claim limitations likely reside;

this diligent search often includes reverse engineering to learn product internals.

● Reading the construed claim (not the raw claim language) onto an accused product: while

“importing” from the patent specification into the claims is a cardinal sin in patent law, so

is trying to work with raw unconstrued claim language; claim construction may in effect

expand the claim language.

● Comparing claim limitations with an accused product or prior-art reference is not

mindless keyword searching or “pattern matching.”

● In the search for patent infringement, a key question to ask is: If someone were

infringing, what terminology would they be using for the different components or steps

that comprise infringement, i.e., that correspond to the limitations of the asserted patent

claim?

● The choice of which parts of a product are juxtaposed with each claim limitation is

constrained by how the limitation fits into the claim as a whole.

● A typical argument in patent litigation might be whether port 80 (HTTP), used solely for

local 127.0.0.1, is nonetheless a network port.

● Saying that X is-a Y or X is-not a Y, is the sum of many smaller comparisons, which can

be spelled out: “all evidence of identity derives its power from the aggregation of

individually uninteresting matches or non-matches.”

● The assertion that D’s product attribute Y matches P’s claim limitation X can be

structured, based on attributes of the claim limitation.

● Using “means for” and other forms of functional claiming requires taking corresponding

structural details from the non-claims portion of the patent specification, and finding at

least one such structure in an accused product.

● The Doctrine of Equivalence (DoE) is a fallback from literal infringement, but is crucial

to patent law (similarly, we’ll see in Part 5 that obviousness is a fallback from

22

anticipation/novelty, yet plays a larger role in patent law than one might think from this

fallback role).

● There are well-established tests for equivalence, such as function/way/result (FWR),

which are applied to each limitation (not to a patent claim as a whole); there are

restrictions on what P can assert is an equivalent.

● The patent-law “nose of wax”: P can’t twist its claim one way to get the patent granted

(or to later evade invalidity), and then twist it a different way to capture infringement; the

invalidity/infringement near-mirror image helps inhibit litigants from taking unreasonable

positions.

● “After-arising” technology: how much should a pioneer be able to reach-through to

capture later improvements?; improvements, by making an original basic invention

actually work on a large scale, may turn out to be as important as the basic invention.

In Part 5, we’ll discuss:

● The concept of patent invalidity; patents are shaky property because of the risk of patent

invalidity;

● Invalidating a patent by showing anticipation (lack of novelty);

● Investigating prior art for a software patent claim: what counts as “prior art,” and how a

patent claim is compared with prior art;

● Prior art already found by the PTO, as reflected in the file wrapper;

● Searching for a negative limitation in prior art;

● A specific prior-art example relevant to the facade-server software patent;

● Limitation-by-limitation analysis of a prior-art reference;

● Obviousness as another way to invalidate a patent: “motivation to combine” multiple

prior-art references.

23

Andrew Schulman is a Senior Software Litigation Consultant at DisputeSoft. He focuses on

software patent litigation, pre-litigation investigations, and source-code review. Mr. Schulman is

also the founder and principal of Software Litigation Consulting. As a software engineer, he

edited and co-authored several books on the internal operation of Microsoft operating systems,

and is an attorney with an LL.M. in Intellectual Property.

If you are in need of a software patent dispute expert, we invite you to consider DisputeSoft.

Contact Information

Jeff Parmet, Managing Partner

301.251.6182

jparmet@disputesoft.com

12505 Park Potomac Ave. | Suite 475 | Potomac, MD | 20854

https://disputesoft.com/experts/andrew-schulman/
http://www.softwarelitigationconsulting.com/
https://disputesoft.com/experts/andrew-schulman/
https://disputesoft.com/experts/jeff-parmet/
mailto:jparmet@disputesoft.com

