

1

The Basics of Software Development for Attorneys

Key concepts for high-stakes commercial disputes involving software and software development

April 2025
v1.0

1

The Basics of Software Development for Attorneys

In today’s world, software is a central component of many modern business operations, covering everything
from supply chain management to online marketing. Businesses often invest substantial amounts of time and
money building or implementing complex software systems in seeking a competitive edge for their operations.

Given its complex and valuable nature, software can be and often is at the center of high-stakes commercial
disputes. When such disputes arise, attorneys need to understand numerous technical aspects that might be
at issue, including how the software was developed, which kinds of tools were used, and which kinds of
systems of record might be available that would shed light on the dispute. This paper provides an overview of
these topics and provides context for attorneys handling such matters.

What is Software?
Software or a computer program is a set of

instructions that tells a computer how to perform

different tasks. Software can be anything, from

applications like Microsoft Word that are operated

directly by users, to behind-the-scenes software like

print drivers that send data to your printer.

In most instances, software exists in machine-

readable binary format. That is, the software is

composed of a set of zeros and ones representing

instructions to the computer that would be difficult

for a human to understand. To understand the

software, it is usually necessary to turn to the source

code used to create the software in the first place.

What is Source Code?
Source code is a human-readable set of

instructions for a computer. Source code may be

written in one or more programming languages,

which are structured languages used for creating

computer programs (shown in the figure below).

Figure 1: Example Source Code

Shown above is an excerpt of source code written in the JavaScript
programming language.

Source: jQuery JavaScript Library, https://github.com/jquery/jquery

How is Software Developed?
As an analogy, consider how a construction

company builds a new house for a buyer. The process

of building the house will be done in several steps,

including (1) starting with determining which

features should be in the house, (2) creating

blueprints, (3) building the designed house, (4)

inspecting the house to make sure it is up to code,

and (5) turning the keys over to the buyer.

At its heart, software development follows a

similar set of processes to create working software.

In general, key software development processes

typically include the following:

• Requirements elaboration, in which the specific

requirements for the software are established,

such as specific functions the software must

have, constraints, etc. (“determining which

features should be in the house”);

• Design, in which plans are made for how

components of the software will be built and

integrated together (“creating blueprints”);

• Construction, in which source code is written in

accordance with the planned designs (“building

the designed house”);

• Testing, in which the software is evaluated and

subjected to quality control efforts to identify and

fix any potential defects (“inspecting the

house”); and

• Implementation, in which the software is put into

production, or operational usage by the

customer, known also as reaching “go-live”

(“turning the keys over to the buyer”).

https://github.com/jquery/jquery

2

There are different methodologies in the software

industry for how these software development

processes are carried out. For example, in a waterfall

approach, these processes are carried out once and in

sequential order. Returning to the homebuilding

analogy, in a waterfall approach, the construction

company would gather all the requirements first,

then make all the blueprints, then build the entire

house, etc.

In contrast, in an iterative approach (e.g., the

Agile or Scrum methodology), the software

development processes are carried out multiple times

to build the software piece-by-piece. Returning to the

homebuilding analogy, in an iterative approach, the

construction company might gather requirements for

only the kitchen first, then design, build, and inspect

the kitchen, etc., before repeating these processes

again for each next room to be built, one at a time.

The specific methodology and processes used by

a software development company and the manner in

which it implements these processes may vary based

on the kind of project. For example, if a development

firm is creating completely customized software for

a client from scratch, it will likely apply all of these

processes to build the software from the ground up to

meet the client’s needs.

In contrast, if a development firm is

implementing commercial-off-the-shelf or COTS

software, some of these processes may not be

necessary. For example, if a client has already

determined that certain software available on the

market meets its needs, it could collaborate with a

development firm solely to implement the COTS

system in production as-is, eliminating the need for

any further requirements gathering.

Software Development Systems of Record
When a software development firm embarks on a

software development project, it typically uses

various systems of record to track and manage its

work on the project. Each system has distinct sets of

data that may be relevant in a software dispute.

One important system of record often used by

software development firms is a software project

management system. These systems are often COTS

products such as Atlassian Jira (shown in the figure

below), Microsoft Azure DevOps, HP Application

Lifecycle Management, or IBM DOORS. However,

in some situations, these systems may be custom-

built applications created by the development firm

for its own internal usage.

Figure 2: Example Screen Display from Atlassian’s “Jira” Software Project Management System

Shown above is an example screen display from Atlassian’s “Jira” software, showing individual tasks, at a summary level, in a project’s ongoing
backlog of planned work. Each task can be expanded to show additional information about the nature of ongoing work to complete the task.

Source: Atlassian, “Product Backlog Template” Webpage, https://www.atlassian.com/software/jira/templates/product-backlog-template

https://www.atlassian.com/software/jira/templates/product-backlog-template
https://www.atlassian.com/software/jira/templates/product-backlog-template

3

Software project management systems typically

store various kinds of records about the development

of the software. For example, some systems track

work done to meet specific requirements, including

information about who worked on each requirement,

when the work was performed, issues encountered,

etc. Similarly, some systems track detailed testing

data, such as specific test plans, when tests were run,

the results of those tests, whether defects were

detected, whether or when defects were fixed, etc.

Another important system of record typically

used in modern software development is a source

code repository. A source code repository is a type

of database that stores a set of source code files and

tracks changes made to those files over time.

Information tracked in the repository typically

includes what changes were made to the files over

time, who made the changes, and summary

information describing the nature of those changes.

Typical source code repository systems include Git

(shown in the figure below), Mercurial, Subversion,

and Perforce.

Figure 3: Example Data from Git Source Code Repository

Shown above is an example of data typically stored in a “Git" source
code repository. Each “commit” represents a distinct set of changes to
files in the repository, and contains information such as:

(1) Commit hash: an alphanumeric code uniquely identifying
the commit;
(2) Tags: optional labels provided by a developer (typically
marking a specific software version);
(3) Author: the developer who created the changes;
(4) Date: when the changes were made; and
(5) Commit message: the developer’s description of the changes
(indented in the example above).

Source: jQuery JavaScript Library, https://github.com/jquery/jquery

Software may be composed of source code stored

in one or multiple repositories used together. These

source code repositories may be stored and

maintained in cloud-based services such as GitHub,

Bitbucket, and Apache Subversion, or on a

company’s corporate computer systems.

As another example of an important system of

record, many development firms may use document

or content management systems for their software

development projects. Such systems may be COTS

products such as Atlassian Confluence or Microsoft

SharePoint, or may be simply various files stored on

network attached storage devices (i.e., corporate file

systems). Many kinds of project files may be stored

on such systems, including design documents,

meeting notes, project schedules, testing results,

system deployment records, etc.

As yet another example of an important system

of record, development firms may have distinct

environments, or sets of computer systems, for a

particular project. Distinct environments are often

used to test the software at various stages of

development. For instance, one environment might

be used for unstable, in-progress development work,

while another might be used for final tests of

stabilized software before it is put into production

usage. Each set of computer systems may store data

such as various technical records and log files that

may be relevant to a dispute.

These environments may exist as physical

machines, which are usually specialized hardware

such as rack-mounted servers installed in a data

center (as opposed to desktop computer systems), or

as virtual machines, which are software-based

computers that act like physical computers.

Producing data from physical machines can be as

simple as copying off relevant data onto dedicated

hard disks, or as complex as performing specialized

forensic processing to create a replica of each

physical system. Producing virtual machines in their

entirety is almost always relatively simple, since all

the files composing an entire virtual computer

system are typically saved within a few files on a host

computer system.

Specific Considerations for Attorneys
When handling a software dispute, it is often a

good idea to start by understanding which software

development life cycle processes were carried out,

and which systems of record were used to track work

during each phase of the software’s development.

This approach can help an attorney to understand

what kinds of records might be available, either to

request during discovery or to respond to an

opposing party’s production requests.

https://github.com/jquery/jquery

4

However, understanding all the processes and

tools used during a software project may not be a

trivial affair. For example, a project may have been

carried out using a single development methodology

for the entirety of the project, or the methodology

may have changed during the project for any number

of reasons, resulting in a more complex picture of

software development events. Engaging an

experienced expert early on may be necessary to

investigate and understand such complexities.

Similarly, a project may have been managed

using one set of tools or project management

software for the entirety of the project, or there may

have been a switch to an entirely different set of tools

mid-way through the project, thereby creating

multiple systems of record over time. Once the used

systems of record are identified and understood,

production can commence from whichever systems

of record are relevant to the dispute.

The manner in which systems of record are

produced is frequently an important consideration.

Several approaches are typically used to produce

records from such systems:

• Exports, in which a system’s built-in

functionality is used to create spreadsheets or

documents containing requested records;

• System backups, which contain a replica of all

data extant in a system of record;

• Direct access, in which users can be provided

direct access to a system of record (typically on a

read-only basis); and

• Native format, in which files are produced in

their original format as used during the regular

course of business operations.

The appropriate production approach may vary

based on what kind of data is available in a system of

record. As an example, consider Amazon

CloudWatch, a cloud-based service for recording

system logs made by operational software. For this

system, export logs may be sufficient as long as the

files contain all relevant recorded information.

However, exports are seldom, if ever, sufficient

when producing source code repositories. Many

analyses, such as determining the exact nature of

changes over time to a set of source code files, can

only be done on a source code repository when

provided direct access to the native files. Conferring

with an experienced expert is often necessary to

determine which production method will be the most

helpful in addressing a dispute.

The appropriate production approach may also

vary based on cost considerations. For most of these

approaches, technical personnel for a party should be

able to produce relevant records without substantial

time or expense. For example, creating a database

backup for a system of record is generally a

straightforward task. More involved tasks, such as

creating full forensic replicas of entire computer

systems, may require specialized personnel or

substantive effort. Such considerations are typically

specific to the facts of a dispute.

Attorneys should particularly consider the form

in which source code is produced. In many cases,

source code is directly exchanged between the

parties in encrypted format, while in other cases,

source code is only made available for inspection on

a review computer in opposing counsel’s office.

The manner in which source code is produced

may create constraints on how it can be analyzed. For

example, a copyright infringement matter may

require side-by-side comparisons of two parties'

source code files to investigate and assess allegations

of potential copying. Such an investigation can be

aided by programmatic comparisons tools if both

parties’ source code files can be exchanged or

otherwise made available on a single computer

system, as opposed to making each set of source code

files available for inspection only on isolated review

computers. Specific situations may vary, and are best

considered with the assistance of an experienced

expert in such matters.

Conclusions
Software development covers a variety of

technical tasks that are typically documented in

numerous systems of record. Attorneys handling

software dispute matters can benefit from an

understanding of these concepts and systems of

record in considering how to address such disputes.

However, while attorneys can benefit from such

an understanding, it should not be considered a

substitute for in-depth technical expertise. In any

software dispute, attorneys should typically plan to

engage an expert who can help address the dispute’s

technical complexities and can provide analyses and

conclusions that can be useful to successfully

resolving the dispute.

www.disputesoft.com

About DisputeSoft

Founded in 2003, DisputeSoft specializes in providing expert analysis and expert witness services in software project

failure disputes and in intellectual property disputes involving software.

Based in the Washington, D.C. metropolitan area, DisputeSoft’s experts have been engaged in matters in numerous

national and international jurisdictions, including various U.S. state and federal courts, the Court of Federal Claims,

the International Trade Commission, and the Patent Trial and Appeal Board, as well as various domestic and

international arbitration panels, and in matters in Canada, Australia, Europe, and Asia.

DisputeSoft’s experience covers a wide breadth of software failure disputes, particularly those with claims related to

late, inadequate, or incomplete delivery and support, as well as extensive code comparisons and analyses of software

and systems at issue in copyright infringement, trade secret misappropriation, and patent infringement matters.

DisputeSoft’s clients include Big Law firms, boutique practices, and sole practitioners, who represent corporate,

government, and individual clients across numerous industries and subject matter domains.

DisputeSoft provides expertise in the following service areas:

• Software Project Failure

• Software Copyright Infringement

• Software Patent Disputes

• Computer Forensic Analysis

• Trade Secrets Analysis

• State & Federal Government Services

• Software Project Management

• Source Code Audits

• Data Analytics

• Data Privacy, Protection, and Security

• Software Project Schedule Analysis

• Software Labor and Cost Analysis

• Internet Misconduct

• Source Code Investigations

• Pre-Litigation Services

• Project Recovery

• Electronic Systems Discovery

• Surety Investigations

About the Authors

Nick Ferrara, EnCE

Mr. Ferrara has approximately 20 years’ experience in the information technology field,

including consulting work, IT management, staffing, and systems administration. At

DisputeSoft, Mr. Ferrara has been an integral part of more than 100 matters, spanning numerous

commercial industries and all of DisputeSoft’s core practice areas.

Mr. Ferrara has been engaged as an expert in state, national, and international jurisdictions and

has testified both in U.S. federal court and before the American Arbitration Association. Mr.

Ferrara is also a certified computer forensic examiner, holding the EnCase Certified Examiner

(EnCE) certification.

Aparna V. Kaliappan

Ms. Kaliappan has approximately 10 years’ experience in the information technology field,

including substantial experience in providing technical analysis in software disputes. At

DisputeSoft, Ms. Kaliappan has worked on approximately 50 matters involving copyright, trade

secrets, data analytics, software project failure, software patents, and computer forensics in

various commercial industries.

Ms. Kaliappan has extensive experience in data analytics, including graduate-level work in

quantitative data visualization. Ms. Kaliappan also holds multiple Oracle and Microsoft database

certifications.

http://www.disputesoft.com/

6116 Executive Boulevard, Suite 330
North Bethesda, MD 20852

Phone: (301) 246-3150
Fax: (240) 465-4442

info@disputesoft.com

